Updated: 2019-06-11

Valorization of residual biomass for advanced 3D materials

Contact: Gary Chinga Carrasco.

The ValBio-3D project will develop efficient technologies for production of sustainable and 100% biobased materials from agro-industrial residues, addressing the bioeconomy of the future, and based on cost-efficient production of biochemicals, bioplastics, biocomposites and tailor-made nanocelluloses. The objectives require a good and well established cooperation between key European and Latin American research institutions, and close contact with relevant industry, which is established in ValBio-3D.

Agro-industrial residues (e.g. sawdust and bagasse) for production of nanocellulose and bioplastics for 3D (bio)printing. Photo: PFI/IMAM.

Research on agro-industrial lignocellulosic resources will be of high importance to the European and Latin American community in general. Hence, this initiative will promote i) joint research of high international quality on biomass resources available in Latin America and Europe, ii) the appropriate use of agro-industrial waste for creating value added biomaterials, iii) novel technologies for structuring biocomposites based on 3D (bio)printing and iv) environmental benefits of bioresources and their biocomposites.

The project is led by Dr. Marí­a Cristina Area. Instituto de Materiales de Misiones (IMAM), Argentina, and has the following partners:

  • Instituto de Materiales de Misiones, Argentina. Responsible for WP1 – Raw materials processing
  • University of la Frontera (UFRO), Chile. Responsible for WP2 – Post-Processing of lignin and hemicellulose
  • VTT Ltd, Finland. Responsible for WP3 – Production and modification of nanocellulose
  • Fraunhofer Institute for Wood Research, WKI, Germary. Responsible for WP4 – Biopolymer synthesis
  • RISE PFI, Norway. Responsible for WP5 – 3D (bio)printing of biocomposites.
  • Pontifical Catholic University of Peru, Peru. Responsible for WP6 – Environmental life-cycle assessment.
  • Biorefinery Santa Ana (SME), Argentina.

Project period: 2017-2019.

Project Meetings

191204 – Project final Meeting. Fraunhofer WKI, Germany

190312 – Project meeting. IMAM, Argentina

180905 – Project meeting. VTT, Espoo, Finland

180321 – Project meeting. UFRO, Temuco, Chile

170911 – Project meeting. RISE PFI, Trondheim, Norway

170301 – Kick-off meeting. PUCP, LIMA, Perú


Book chapter:

Ehman NV, Ponce de León A, Felissia F, Vallejos N, Area MC, Chinga-Carrasco G* (2021). Biocomposites of polyhydroxyalkanoates and lignocellulosic components – Focus on biodegradation and 3D printing. Chapter in: ‘Bioplastics for Sustainable Development’, 2021. Springer, eds. Mohammed Kuddus; Roohi, DOI: 10.1007/978-981-16-1823-9

Peer-reviewed articles:

Ita-Nagy D,  Vázquez-Rowe A, Kahhat R, Quispe I, Chinga-Carrasco G, Clauser, NM, Area MC. Life cycle assessment of bagasse fiber reinforced biocomposites. Science of The Total Environment Volume 720, 2020, 137586

Mendieta M, Vallejos ME, Felissia FE, Chinga‑Carrasco G, Area MC. Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment 2019, 1-16

Kangas H, Felissia, FE, Filgueira D, Ehman NV, Vallejos ME, Imlauer, CM, Lahtinen P, Area MC and Chinga-Carrasco G3D Printing High-Consistency Enzymatic Nanocellulose Obtained from a Soda-Ethanol-O2 Pine Sawdust Pulp. Bioengineering 2019 6(3), 60

Chinga-Carrasco G, Ehman NV, Filgueira D, Johansson J, Vallejos ME, Felissia FE, Håkansson J, Area MC. Bagasse – a major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices. Additive Manufacturing 28, 267-274.

Syrový T, Maronová S, Kuberský P, Ehman NV, Vallejos ME, Pretl S, Felissia FE, Area MC, Chinga-Carrasco G. Wide range humidity sensors printed on biocomposite films of cellulose nanofibril and poly(ethylene glycol)
J. Appl. Polym. Sci. 2019, 136, 47920

Fabiola Valdebenito, Rafael García, Karen Cruces, Gustavo Ciudad, Gary Chinga-Carrasco, Youssef Habibi. CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustainable Chem. Eng., DOI: 10.1021/acssuschemeng.8b00771

Quim Tarrés, Johnny K. Melbø, Marc Delgado-Aguilar, F.X. Espinach, Pere Mutjé and G. Chinga-Carrasco. Bio-polyethylene reinforced with thermomechanical pulp fibers: Mechanical and micromechanical characterization and its application in 3D-printing by fused deposition modelling. Composites Part B: Engineering 153, 2018, 70-77

Filgueira, D., Holmen, Sl., Melbø, J.K., Moldes, D., Echtermeyer, A.T., Chinga-Carrasco, G. 2018. 3D Printable Filaments made of Biobased Polyethylene Biocomposites. Polymers 2018, 10(3), 314 – Special issue “Polymers from Renewable Resources”.

Chinga-Carrasco, G. (2018). Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices. Biomacromolecules, 2018, 19 (3), pp 701–711

Chinga-Carrasco, G.; Ehman, N.V.; Pettersson, J.; Vallejos, M.E.; Brodin, M.W.; Felissia, F.E.; Håkansson, J.; Area, M.C. Pulping and pretreatment affect the characteristics of bagasse inks for 3D printing. ACS Sustainable Chem. Eng., 2018, 6 (3), pp 4068–4075

Filgueira, D., Holmen, S., Melbø, J.K., Moldes, D., Echtermeyer, A.T., Chinga-Carrasco, G.: Enzymatic-assisted modification of thermo-mechanical pulp fibers for improving the interfacial adhesion with poly(lactic acid) for 3D printing. ACS Sustainable Chemistry & Engineering, 2017, 5(10), 9338–9346.

Brodin, M., Vallejos, M., Tanase Opedal, M., Area, M.A., Chinga-Carrasco, G.: Lignocellulosics as sustainable resources for production of bioplastics – a review. Journal of Cleaner Production, 2017,  162,  646–664.

Electronic media:

200206 – South American and European experts demonstrated how to turn agro- and forestry residues into high value products

190618 – Producing 3D-Printing Materials through Agricultural Biowaste

190603 – Turning agricultural biowaste into high-value 3D-printing materials

190204 – Investigación del CONICET: residuos de madera para fabricar bioplásticos.

190118 – La pulpa de bagazo de caña de azúcar como materia prima para nanocelulosa.

181106 – La madera misionera podría ser fuente de plástico biodegradable para imprimir en 3D

181022 – Impresión 3D con residuos forestales

180913 – Avanza proyecto de producción de bioplásticos para impresiones 3D con residuos agroindustriales

180910 – The ValBio-3D team meets to discuss production of second-generation bioplastics, nanocelluloses and biocomposites for 3D printing

180502 – Scientists from South-America and Europe meet to discuss recent advances in bioplastic, nanocellulose and biocomposite production, from agro-industrial waste

180316 – Investigadores del Instituto de Materiales están involucrados en el proyecto europeo latinoamericano ValBio-3D

180305 – Natural fiber suppliers see opportunities in compounds

180226 – Researchers Use Sugarcane Waste As Source For 3D Bioinks

180226 – Sugar industry waste may be 3D-printing breakthrough

180223 – Bagasse Fibers as Bioink: Research Shows That Sugarcane Waste is Suitable for 3D Printing

180222 – Why burn bagasse when you can 3D print its nanocellulose

170706 – Valorization of residual biomass for advanced 3D materials

170401 – De skal utvikle 2. generasjons bioplast, cellulosenanofiber og biokompositter (page 51)

170320 – Samarbete om nästa generation bioplaster

170310 – Key European and South American researchers join forces to develop second generation bioplastics, cellulose nanofibres and biocomposites

170301 – Buscarán hacer impresiones 3D a partir del residuo de aserrín

161111 – UFRO es líder en Chile en proyecto que valorizará residuos de procesos industriales